74 research outputs found

    Synthetic Data for Face Recognition: Current State and Future Prospects

    Full text link
    Over the past years, deep learning capabilities and the availability of large-scale training datasets advanced rapidly, leading to breakthroughs in face recognition accuracy. However, these technologies are foreseen to face a major challenge in the next years due to the legal and ethical concerns about using authentic biometric data in AI model training and evaluation along with increasingly utilizing data-hungry state-of-the-art deep learning models. With the recent advances in deep generative models and their success in generating realistic and high-resolution synthetic image data, privacy-friendly synthetic data has been recently proposed as an alternative to privacy-sensitive authentic data to overcome the challenges of using authentic data in face recognition development. This work aims at providing a clear and structured picture of the use-cases taxonomy of synthetic face data in face recognition along with the recent emerging advances of face recognition models developed on the bases of synthetic data. We also discuss the challenges facing the use of synthetic data in face recognition development and several future prospects of synthetic data in the domain of face recognition.Comment: Accepted at Image and Vision Computing 2023 (IVC 2023

    Are Explainability Tools Gender Biased? A Case Study on Face Presentation Attack Detection

    Full text link
    Face recognition (FR) systems continue to spread in our daily lives with an increasing demand for higher explainability and interpretability of FR systems that are mainly based on deep learning. While bias across demographic groups in FR systems has already been studied, the bias of explainability tools has not yet been investigated. As such tools aim at steering further development and enabling a better understanding of computer vision problems, the possible existence of bias in their outcome can lead to a chain of biased decisions. In this paper, we explore the existence of bias in the outcome of explainability tools by investigating the use case of face presentation attack detection. By utilizing two different explainability tools on models with different levels of bias, we investigate the bias in the outcome of such tools. Our study shows that these tools show clear signs of gender bias in the quality of their explanations

    ExFaceGAN: Exploring Identity Directions in GAN's Learned Latent Space for Synthetic Identity Generation

    Full text link
    Deep generative models have recently presented impressive results in generating realistic face images of random synthetic identities. To generate multiple samples of a certain synthetic identity, several previous works proposed to disentangle the latent space of GANs by incorporating additional supervision or regularization, enabling the manipulation of certain attributes, e.g. identity, hairstyle, pose, or expression. Most of these works require designing special loss functions and training dedicated network architectures. Others proposed to disentangle specific factors in unconditional pretrained GANs latent spaces to control their output, which also requires supervision by attribute classifiers. Moreover, these attributes are entangled in GAN's latent space, making it difficult to manipulate them without affecting the identity information. We propose in this work a framework, ExFaceGAN, to disentangle identity information in state-of-the-art pretrained GANs latent spaces, enabling the generation of multiple samples of any synthetic identity. The variations in our generated images are not limited to specific attributes as ExFaceGAN explicitly aims at disentangling identity information, while other visual attributes are randomly drawn from a learned GAN latent space. As an example of the practical benefit of our ExFaceGAN, we empirically prove that data generated by ExFaceGAN can be successfully used to train face recognition models.Comment: Accepted at IJCB 202

    The Effect of Wearing a Mask on Face Recognition Performance: an Exploratory Study

    Full text link
    Face recognition has become essential in our daily lives as a convenient and contactless method of accurate identity verification. Process such as identity verification at automatic border control gates or the secure login to electronic devices are increasingly dependant on such technologies. The recent COVID-19 pandemic have increased the value of hygienic and contactless identity verification. However, the pandemic led to the wide use of face masks, essential to keep the pandemic under control. The effect of wearing a mask on face recognition in a collaborative environment is currently sensitive yet understudied issue. We address that by presenting a specifically collected database containing three session, each with three different capture instructions, to simulate realistic use cases. We further study the effect of masked face probes on the behaviour of three top-performing face recognition systems, two academic solutions and one commercial off-the-shelf (COTS) system.Comment: Accepted at BIOSIG202

    MorDIFF: Recognition Vulnerability and Attack Detectability of Face Morphing Attacks Created by Diffusion Autoencoders

    Full text link
    Investigating new methods of creating face morphing attacks is essential to foresee novel attacks and help mitigate them. Creating morphing attacks is commonly either performed on the image-level or on the representation-level. The representation-level morphing has been performed so far based on generative adversarial networks (GAN) where the encoded images are interpolated in the latent space to produce a morphed image based on the interpolated vector. Such a process was constrained by the limited reconstruction fidelity of GAN architectures. Recent advances in the diffusion autoencoder models have overcome the GAN limitations, leading to high reconstruction fidelity. This theoretically makes them a perfect candidate to perform representation-level face morphing. This work investigates using diffusion autoencoders to create face morphing attacks by comparing them to a wide range of image-level and representation-level morphs. Our vulnerability analyses on four state-of-the-art face recognition models have shown that such models are highly vulnerable to the created attacks, the MorDIFF, especially when compared to existing representation-level morphs. Detailed detectability analyses are also performed on the MorDIFF, showing that they are as challenging to detect as other morphing attacks created on the image- or representation-level. Data and morphing script are made public: https://github.com/naserdamer/MorDIFF.Comment: Accepted at the 11th International Workshop on Biometrics and Forensics 2023 (IWBF 2023

    Template-Driven Knowledge Distillation for Compact and Accurate Periocular Biometrics Deep-Learning Models

    Get PDF
    This work addresses the challenge of building an accurate and generalizable periocular recognition model with a small number of learnable parameters. Deeper (larger) models are typically more capable of learning complex information. For this reason, knowledge distillation (kd) was previously proposed to carry this knowledge from a large model (teacher) into a small model (student). Conventional KD optimizes the student output to be similar to the teacher output (commonly classification output). In biometrics, comparison (verification) and storage operations are conducted on biometric templates, extracted from pre-classification layers. In this work, we propose a novel template-driven KD approach that optimizes the distillation process so that the student model learns to produce templates similar to those produced by the teacher model. We demonstrate our approach on intra- and cross-device periocular verification. Our results demonstrate the superiority of our proposed approach over a network trained without KD and networks trained with conventional (vanilla) KD. For example, the targeted small model achieved an equal error rate (EER) value of 22.2% on cross-device verification without KD. The same model achieved an EER of 21.9% with the conventional KD, and only 14.7% EER when using our proposed template-driven KD

    Iris Liveness Detection Competition (LivDet-Iris) -- The 2020 Edition

    Full text link
    Launched in 2013, LivDet-Iris is an international competition series open to academia and industry with the aim to assess and report advances in iris Presentation Attack Detection (PAD). This paper presents results from the fourth competition of the series: LivDet-Iris 2020. This year's competition introduced several novel elements: (a) incorporated new types of attacks (samples displayed on a screen, cadaver eyes and prosthetic eyes), (b) initiated LivDet-Iris as an on-going effort, with a testing protocol available now to everyone via the Biometrics Evaluation and Testing (BEAT)(https://www.idiap.ch/software/beat/) open-source platform to facilitate reproducibility and benchmarking of new algorithms continuously, and (c) performance comparison of the submitted entries with three baseline methods (offered by the University of Notre Dame and Michigan State University), and three open-source iris PAD methods available in the public domain. The best performing entry to the competition reported a weighted average APCER of 59.10\% and a BPCER of 0.46\% over all five attack types. This paper serves as the latest evaluation of iris PAD on a large spectrum of presentation attack instruments.Comment: 9 pages, 3 figures, 3 tables, Accepted for presentation at International Joint Conference on Biometrics (IJCB 2020

    EFaR 2023: Efficient Face Recognition Competition

    Full text link
    This paper presents the summary of the Efficient Face Recognition Competition (EFaR) held at the 2023 International Joint Conference on Biometrics (IJCB 2023). The competition received 17 submissions from 6 different teams. To drive further development of efficient face recognition models, the submitted solutions are ranked based on a weighted score of the achieved verification accuracies on a diverse set of benchmarks, as well as the deployability given by the number of floating-point operations and model size. The evaluation of submissions is extended to bias, cross-quality, and large-scale recognition benchmarks. Overall, the paper gives an overview of the achieved performance values of the submitted solutions as well as a diverse set of baselines. The submitted solutions use small, efficient network architectures to reduce the computational cost, some solutions apply model quantization. An outlook on possible techniques that are underrepresented in current solutions is given as well.Comment: Accepted at IJCB 202
    corecore